# SECTION 230100 - BASIC MECHANICAL REQUIREMENTS

## PART 1 - GENERAL

## 1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this and the other sections of Division 23 AND 22.
- B. The requirements of this section apply to all other Division 23 and 22 Sections.
- C. Drawings and Specification Sections are grouped similar to the Construction Standards Institute's Masterformat and to accommodate common construction industry practice. This grouping does not refer whatsoever as to what type of seller, craft, trade, employee or subcontractor should furnish the work and/or materials. Such grouping is not to be construed as an assignment of labor or material to any particular craft or seller.
- D. Contract Drawings are in part schematic, intended to convey the scope of work and indicate the general layout, design and arrangement. Contract Drawings are not to be scaled.
- E. Follow Contract Drawings in laying out the work. Check and be familiar with Shop Drawings and Coordination Drawings affecting spaces in which the work will be installed.

#### 1.2 JOB CONDITIONS

- A. Maintain a superintendent or foreman for each trade at the job site when work is being performed and when required for coordination between trades.
- B. Protect work, materials and equipment from damage before, during, and after installation. Cap or plug temporary openings. Protect system piping, ductwork, conduit, etc., from accumulation of unwanted debris. Repair or restore rusted or otherwise damaged materials and equipment to "as new" condition as acceptable to the Engineer.
- C. Coordinate routing of piping, ductwork, conduit, etc., to allow installation and service access. Refer conflicts to the Engineer for final decisions as to right-of-way.
- D. Rework or modify work installed out of proper sequence that causes conflict with the installation of other work.
- E. Take measurements and make layouts for installation of work and for coordination with other work. Examine areas, available space, and conditions for compliance with requirements of the drawings and specifications, and requirements of product manufacturer. Correct deficient or unsatisfactory conditions prior to installation of the work.

## 1.3 CODES, ORDINANCES, AND REGULATIONS

- A. Comply with applicable national, state, and local codes, ordinances, and regulations, including but not limited to the following:
  - 1. 2012 International Plumbing Code
  - 2. 2012 International Mechanical Code

- 3. 2012 National Electrical Code
- 4. National Fire Protection Association Standards.
- 5. O.S.H.A. Regulations.
- 6. U.S. Environmental Protection Agency Regulations.

## 1.4 START-UP, ADJUSTMENT, AND INSTRUCTION

- A. Prior to final acceptance, operate systems and equipment for a minimum of 72 continuous hours and until normal operating conditions are achieved, as approved by the Engineer. Clean systems and equipment. Install new filters, screens, etc. prior to final acceptance by the Owner.
- B. Demonstrate to and instruct the Owner in the proper operation of all systems and equipment.
- C. Adjust all systems and equipment to provide operation shown and described on the drawings and specified herein. Properly align and adjust drive components, bearings, etc. for all equipment to eliminate excess noise and vibration as acceptable to the Engineer.
- D. Should, in the opinion of the Owner or Engineer, the Contractor be unable or unwilling to properly adjust the work, or instruct the Owner in the proper operation of the equipment and systems, adjustment and instruction will be provided by the Engineer at the rate of \$125.00 per hour with the cost of these services to be paid by the Contractor.

## 1.5 WARRANTIES AND GUARANTEES

- A. In addition to warranties called for in other sections of these specifications, work shall be guaranteed against defect due to faulty installation, manufacture, and component design. Warranties and guarantees shall be for a period of not less than one year, beginning on the date of final acceptance by the Owner.
- B. Upon written notice from the Owner or Engineer, promptly remedy, without cost to the Owner, any defects occurring or discovered during the guarantee period.

# 1.6 SUBMITTALS

- A. Acceptable Manufacturers
  - 1. Subject to compliance with the requirements of the individual specification sections, provide materials and equipment from the indicated manufacturers only. Submittals of material or equipment manufactured by other than those indicated will be returned.
- B. Submittal Procedures
  - 1. Coordination: Coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
    - a. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals and related activities that require sequential activity.
    - b. Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
      - 1) The Engineer reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
  - 2. Processing: Allow sufficient review time so that installation will not be delayed as a result of the time required to process submittals, including time for resubmittals.

- a. Allow 10 working days for initial review. Allow additional time if processing must be delayed to permit coordination with subsequent submittals. The Engineer will promptly advise the Contractor when a submittal being processed must be delayed for coordination.
- b. If an intermediate submittal is necessary, process the same as the initial submittal.
- c. Allow 10 working days for reprocessing each submittal.
- d. No extension of contract time will be authorized because of failure to transmit submittals to the Engineer sufficiently in advance of the Work to permit processing.
- 3. Submittal Preparation: Place a permanent label or title block on each submittal for identification. Indicate the name of the entity that prepared each submittal on the label or title block.
  - a. Provide a space approximately 4" x 5" on the label or beside the title block on Shop Drawings to record the Contractor's review and approval markings and the action taken.
  - b. Include the following information on the label or title block for processing and recording action taken.
    - 1) Project name.
    - 2) Date.
    - 3) Name and address of Engineer.
    - 4) Name and address of Contractor.
    - 5) Name and address of subcontractor.
    - 6) Name and address of supplier.
    - 7) Name of manufacturer.
    - 8) Number and title of appropriate Specification Section.
    - 9) Drawing number and detail references, as appropriate.
- 4. Submittal Transmittal: Package each submittal appropriately for transmittal and handling. Transmit each submittal from Contractor to Engineer using a transmittal form. Submittals received from sources other than the Contractor will be returned without action.
  - a. On the transmittal record relevant information and requests for data. On the form, or separate sheet, record deviations from Contract Document requirements, including minor variations and limitations. Include Contractor's certification that information complies with Contract Document requirements.

# 1.7 SHOP DRAWINGS

- A. Submit information, drawn to accurate scale. Highlight, encircle, or otherwise indicate deviations from the Contract Documents. Do not reproduce Contract Documents or copy standard information as the basis of Shop Drawings. Standard information prepared without specific reference to the Project is not considered Shop Drawings.
- B. Shop Drawings include fabrication and installation drawings, setting diagrams, schedules, patterns, templates and similar drawings. Include the following information:
  - 1. Dimensions.
  - 2. Identification of products and materials included.
  - 3. Compliance with specified standards.
  - 4. Notation of coordination requirements.
  - 5. Notation of dimensions established by field measurement.
  - 6. Clearances for access and service.
- C. Sheet Size: Except for templates, patterns and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2" x 11", but no larger than 30" x 42".
- D. Final Submittal: Submit 3 blue or black line prints and additional prints, quantity as required for maintenance manuals, plus the number of prints needed for general distribution. 1 print will be retained; the remainder returned.

- 1. One of the prints returned shall be marked-up and maintained as a "Record Document".
- E. Do not use Shop Drawings without an appropriate final stamp indicating action taken in connection with construction.

# 1.8 PRODUCT DATA

- A. Collect Product Data into a single submittal for each element of construction or system. Product Data includes printed information such as manufacturer's installation instructions, catalog cuts, standard color charts, roughing-in diagrams and templates, standard wiring diagrams and performance curves. Where Product Data must be specially prepared because standard printed data is not suitable for use, submit as Shop Drawings.
  - 1. Mark each copy to show applicable choices and options. Where printed Product Data includes information on several products, some of which are not required, mark copies to indicate the applicable information. Include the following information:
    - a. Manufacturer's printed recommendations.
    - b. Compliance with recognized trade association standards.
    - c. Compliance with recognized testing agency standards.
    - d. Application of testing agency labels and seals.
    - e. Notation of dimensions verified by field measurement.
    - f. Notation of coordination requirements.
  - 2. Do not submit Product Data until compliance with requirements of the Contract Documents has been confirmed.
  - 3. Submittals: Submit 2 copies of each required submittal and additional quantity as required for maintenance manuals, plus the number needed for general distribution. The Engineer will retain one, and will return the other marked with action taken and corrections or modifications required.
  - 4. Distribution: Furnish copies of final submittal to installers, subcontractors, suppliers, manufacturers, fabricators, and others required for performance of construction activities. Show distribution on transmittal forms.
    - a. Do not proceed with installation until an applicable copy of Product Data applicable is in the installer's possession.
    - b. Do not permit use of unmarked copies of Product Data in connection with construction.

## 1.9 ENGINEER'S ACTION

- A. The Contractor is responsible for all data and information on submittals, including quantities, sizes, dimensions, and compliance with the Drawings and Specifications. Checking by the Engineer is only for general conformance with the design concept of the project and general compliance with the information given in the Contract Documents. Any action shown is subject to the requirements of the Drawings and Specifications. Contractor is responsible for dimensions and quantities which shall be confirmed at the job site, and fabrication process and techniques of construction.
- B. Except for submittals for record, information or similar purposes, where action and return is required or requested, the Engineer will check each submittal, mark to indicate action taken, and return promptly.
  - 1. Compliance with specified characteristics is the Contractor's responsibility.

## 1.10 RECORD DOCUMENTS

- A. General: Do not use record documents for construction purposes; protect from deterioration and loss in a secure, fire-resistive location; provide access to record documents for the Engineer's reference during normal working hours.
- B. Record Drawings: Maintain a clean, undamaged set of blue or black line prints of Contract Drawings and Shop Drawings. Mark the set to show the actual installation where the installation varies substantially from the Work as originally shown. Mark whichever drawing is most capable of showing conditions fully and accurately; where Shop Drawings are used, record a cross-reference at the corresponding location on the Contract Drawings. Give particular attention to concealed elements that would be difficult to measure and record at a later date.
  - 1. Mark record sets with red erasable pencil; use other colors to distinguish between variations in separate categories of the Work.
  - 2. Mark new information that is important to the Owner, but was not shown on Contract Drawings or Shop Drawings.
  - 3. Note related Change Order numbers where applicable.
  - 4. Organize record drawing sheets into manageable sets, bind with durable paper cover sheets, and print suitable titles, dates and other identification on the cover of each set.
- C. Prepare record documents including indication of the following installed conditions:
  - 1. Ductwork mains and branches, size and location, for both exterior and interior; locations of dampers and other control devices; filters, boxes, and terminal units requiring periodic maintenance or repair.
  - 2. Mains and branches of piping systems, with control devices located and numbered, concealed unions located, and with items requiring maintenance located. Indicate actual inverts and horizontal locations of underground piping.
  - 3. Contract Modifications, actual equipment and materials installed.

## 1.11 MAINTENANCE MANUALS

- A. Maintenance Manuals: Organize operating and maintenance data into suitable sets of manageable size. Bind properly indexed data in individual heavy-duty 2", 3-ring vinyl-covered binders, with pocket folders for folded sheet information. Mark appropriate identification on front and spine of each binder. Include the following types of information:
  - 1. Emergency instructions.
  - 2. Spare parts list.
  - 3. Copies of warranties.
  - 4. Wiring diagrams.
  - 5. Recommended "turn around" cycles.
  - 6. Inspection procedures.
  - 7. Shop Drawings and Product Data.
- B. Prepare maintenance manuals to include the following information for equipment items:
  - 1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.
  - 2. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
  - 3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
  - 4. Servicing instructions and lubrication charts and schedules.

- 5. Before Substantial Completion, when each installation that requires submittal of operating and maintenance manuals is nominally complete, submit two draft copies of each manual to the Engineer for review. Include a complete index or table of contents of each manual.
  - a. The Engineer will return one copy of the draft with comments within fifteen days of receipt.
- 6. Submit one copy of data in final form at least fifteen days before Contractor's request for final observation. This copy will be returned within fifteen days after final observation, with comments.
- 7. After final observation make corrections or modifications to comply with the Engineer's comments. Submit 5 copies of each approved manual to the Engineer within fifteen days of receipt of the Engineer's comments.

## 1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products, materials and equipment marked with product names, model numbers, types, grades, compliance labels, and other information needed for identification. Inspect items for shipping damage and refuse, return, or refurbish items to the satisfaction of the Engineer. Maintain delivery records for inventory control and for use in processing payment request vouchers. Cross check delivery records with project schedule so as to eliminate work stoppages due to material shortages.
- B. Store products, materials, and equipment in a manner to prevent damage and degradation. Store items on skids or pallets, elevated above the floor or grade. Store items subject to moisture damage in a dry location. Retain protective shipping covers, crates, and cartons during storage. Protect items from contamination by job site dirt and debris and other foreign matter. Segregate items into groups of like type for job site storage. Provide a secure, fenced and lighted area for outside job site storage.
- C. Handle products, materials, and equipment in accordance with manufacturer's recommendations and recognized industry standards. Utilize lifting lugs, and designated lift points when hoisting equipment. In all cases, carefully handle, transport, and position items to prevent damage during construction. After placement or installation, cover items with tarps or sheeting where required to protect from damage during construction.

## PART 2 - PRODUCTS

2.1 Not Applicable

## PART 3 - EXECUTION

## 3.1 EXAMINATION

- A. Examine work area for suitability of conditions prior to installation of work. Coordinate location of work with adjacent work. Field verify location of work including dimensions and required clearances prior to proceeding with installation.
- B. Where unsatisfactory or unsuitable conditions are encountered, do not proceed until the appropriate persons have been notified and the conditions corrected.

#### 3.2 ROUGH-IN

- A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.
- B. Refer to equipment specifications in individual sections for rough-in requirements.

#### BASIC MECHANICAL REQUIREMENTS

# 3.3 INSTALLATIONS

- A. General: Sequence, coordinate, and integrate the various elements of systems, materials, and equipment. Comply with the following requirements:
  - 1. Coordinate mechanical systems, equipment, and materials installation with other building components.
  - 2. Verify all dimensions by field measurements.
  - 3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
  - 4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
  - 5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
  - 6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
  - 7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
  - 8. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Engineer.
  - 9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, except where pitch is required for proper drainage.
  - 10. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to accessible locations.
  - 11. Install access panel or doors where serviceable equipment is concealed behind finished surfaces.
  - 12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

## 3.4 CUTTING AND PATCHING

- A. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.
- B. Perform cutting, fitting, and patching of mechanical equipment and materials required to:
  - 1. Uncover Work to provide for installation of ill-timed Work.
  - 2. Remove and replace defective Work.
  - 3. Remove and replace Work not conforming to requirements of the Contract Documents.
  - 4. Remove samples of installed Work as specified for testing.
  - 5. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer observation of concealed Work.

# END OF SECTION 230100

# SECTION 230500 – COMMON HVAC REQUIREMENTS

## PART 1 - GENERAL

#### 1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this and the other sections of Division 23.
- B. The requirements of this section apply to all other Division 23 Sections.

## 1.2 SUBMITTALS

- A. Product data for the following:
  - 1. Joint sealers.
  - 2. Equipment curbs and supports.

## 1.3 PROJECT CONDITIONS

- A. Excavations: The following project conditions apply:
  - 1. Maintain and protect existing building services which pass through the area affected by excavation.
  - 2. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by excavation operations.
  - 3. Site Information: Subsurface conditions were investigated during the design of the Project. Reports of these investigations are available for information only; data in the reports are not intended as representations or warranties of accuracy or continuity of conditions. The Owner or Engineer will not be responsible for interpretations or conclusions drawn from this information.
  - 4. Existing Utilities: Locate existing underground utilities in excavation areas. If utilities are indicated to remain, support and protect services during excavation operations.

## PART 2 - PRODUCTS

## 2.1 MECHANICAL EQUIPMENT NAMEPLATE DATA

- A. Nameplate: For each piece of power operated mechanical equipment provide a permanent nameplate indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels showing compliances with testing, and similar essential data. Locate nameplates in an easily observed accessible location.
- 2.2 SOIL MATERIALS
  - A. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, crushed slag, or natural or crushed sand.
  - B. Drainage Fill: Washed, evenly graded mixture of crushed stone, or crushed or uncrushed gravel, with 100 percent passing a 1-1/2" sieve, and not more than 5 percent passing a No. 4 sieve.

- C. Backfill and Fill Materials: Materials complying with ASTM D2487 soil classification groups GW, GP, GM, SM, SW, and SP; free of clay, rock, or gravel larger than 2" in any dimension, land free of debris, waste, frozen materials, and vegetable matter.
- D. Reference Specification Section 022000 Site Clearing and Earthwork for additional material requirements. Contractor shall provide to the most stringent material requirements.

# 2.3 MISCELLANEOUS METALS

- A. Steel plates, shapes, bars, and bar grating: ASTM A 36.
- B. Cold-Formed Steel Tubing: ASTM A 500.
- C. Steel Pipe: ASTM A 53, Schedule 40, welded.
- D. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout, recommended for interior and exterior applications and complying with requirements of ASTM C1107.

# 2.4 JOINT SEALERS

- A. General: Joint sealers (other than for sealing ductwork).
- B. Elastomeric Joint Sealers:
  - 1. One-part, mildew-resistant, silicone sealant complying with ASTM C 920, Type S, Grade NS, Class 25, for uses in non-traffic areas for glass, aluminum, and nonporous joint substrates; formulated with fungicide; intended for sealing interior joints with nonporous substrates; and subject to in-service exposure to conditions of high humidity and temperature extremes.
  - 2. Products: Subject to compliance with requirements, provide one of the following:
    - a. "Dow Corning 786," Dow Corning Corp.
    - b. "SCS 1702 Sanitary," General Electric Co.
    - c. "863 #345 White," Pecora Corp.
- C. Fire-Resistant Joint Sealers: Two-part, foamed-in-place, silicone sealant formulated for use in throughpenetration fire-stopping around cables, conduit, pipes, and duct penetrations through fire-rated walls and floors. Sealants and accessories shall have fire-resistance ratings indicated, as established by testing identical assemblies in accordance with ASTM E 814, by Underwriters' Laboratories, Inc., or other testing and inspection agency acceptable to the Engineer and authorities having jurisdiction.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. "Dow Corning Fire Stop Foam," Dow Corning Corp.
    - b. "Pensil 851," General Electric Co.
- D. Color as selected by Architect from full range of manufacturer's color offering.
- E. Reference drawings for Fire Stopping details.

## 2.5 EQUIPMENT CURBS

- A. General:
  - 1. Factory manufactured assemblies, fabricated from 16 gauge minimum thickness galvanized steel. Construction shall utilize continuous welded seams, mitered corners, factory installed 3 lb./cu. ft. density rigid glass fiber insulation, and treated wood nailer.
  - 2. Coordinate dimensions and locations of curbs and supports with equipment and roof construction, including roof pitch. Provide tapered curbs to match roof pitch. Provide curbs with minimum curb height of 14" above roof surface. Curb Height shall be coordinated with roof slopes.
  - 3. Securely attach curbs and supports to roof deck.
- B. Pipe Penetration Curbs: Provide laminated, acrylic clad, ABS curb cover, flexible sealing boots, and stainless steel clamps.
- C. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Pate

## PART 3 - EXECUTION

## 3.1 EXCAVATION

- A. General:
  - 1. The following definitions apply to excavation operations:
    - a. Additional Excavation: Where excavation has reached required subgrade elevations, if unsuitable bearing materials are encountered, continue excavation until suitable bearing materials are reached. The Contract Sum may be adjusted by an appropriate Contract Modification.
    - b. Unauthorized excavation consists of removal of materials beyond indicated subgrade elevations or dimensions without specific direction from the Engineer.
  - 2. Slope sides of excavations to prevent caving and comply with local codes and ordinances. Shore and brace for stability of excavation.
- B. Shoring and Bracing: Establish requirements for trench shoring and bracing to comply with local codes and authorities. Maintain shoring and bracing in excavations regardless of time period excavations will be open.
  - 1. Remove shoring and bracing immediately prior to backfilling. Where sheeting is to remain, cut top of sheeting at an elevation of 30" below finished grade elevation.
- C. Install sediment and erosion control measures to prevent excavation bed and surface erosion, and as may be required by local codes and ordinances. References Architectural Specification Sections in Division 1 & 2.
- D. Dewatering: Prevent surface water and subsurface or ground water from flowing into excavations and from flooding project site and surrounding area.
  - 1. Do not allow water to accumulate in excavations. Remove water to prevent softening of bearing materials. Provide and maintain dewatering system components necessary to convey water away from excavations.
  - 2. Establish and maintain temporary drainage ditches and other diversions outside excavation limits to convey surface water to collecting or run-off areas. Do not use trench excavations as temporary drainage ditches.

- E. Material Storage: Stockpile satisfactory excavated materials until required for backfill or fill. Place, grade, and shape stockpiles for proper drainage.
  - 1. Locate and retain soil materials away from edge of excavations at locations indicated, where not specifically indicated as directed by Architect. Do not store within drip-line of trees indicated to remain.
  - 2. Remove and legally dispose of excess excavated materials and materials not acceptable for use as backfill or fill as directed by Owner's representative.
- F. Excavation for Underground Basins: Conform to elevations and dimensions shown within a tolerance of plus or minus 0.10 foot; plus a sufficient distance to permit placing and removal of concrete formwork, installation of services, other construction, and for inspection.
  - 1. Excavate, by hand, areas within drip-line of large trees. Protect the root system from damage and dryout. Maintain moist conditions for root system and cover exposed roots with burlap. Paint root cuts of 1" in diameter and larger with emulsified asphalt tree paint.
  - 2. Take care not to disturb bottom of excavation. Excavate by hand to final grade immediately prior to placement of work.
- G. Trenching: Excavate trenches as follows:
  - 1. Excavate trenches to the uniform width, sufficiently wide to provide ample working room and a minimum of 6 to 9 inches clearance on both sides of pipe and equipment.
  - 2. Excavate trenches to depth indicated or required for piping to establish indicated slope and invert elevations. Beyond building perimeter, excavate trenches to an elevation allowing installation of work below frost line.
  - 3. Limit the length of open trench to that in which pipe can be installed, tested, and the trench backfilled within the same day.
  - 4. Where rock is encountered, carry excavation below required elevation and backfill with a layer of crushed stone or gravel prior to installation of pipe. Provide a minimum of 6" of stone or gravel cushion between rock bearing surface and pipe.
  - 5. Provide pipe bedding material of crushed stone or gravel, 6" minimum depth, for excavations with wet trench bottoms.
  - 6. Excavate trenches for piping and equipment with bottoms of trench to accurate elevations for support of pipe and equipment on undisturbed soil.
    - a. For pipes or equipment 6" or larger in nominal size, shape bottom of trench to fit bottom 1/4 of the circumference. Fill unevenness with tamped sand backfill. At each pipe joint over-excavate to relieve the bell or pipe joint of the pipe of loads, and to ensure continuous bearing of the pipe barrel on the bearing surface.
- H. Cold Weather Protection: Protect excavation bottoms against freezing when atmospheric temperature is less than 35° F.
- I. Backfilling and Filling: Place soil materials in layers to required subgrade elevations for each area classification listed below.
  - 1. Under walks and pavements, use a combination of subbase materials and excavated or borrowed materials.
  - 2. Under building slabs, use drainage fill materials. Refer to Specification Section Site Clearing and Earthwork.
  - 3. Under piping and equipment, use subbase materials where required over rock bearing surface and for correction of unauthorized excavation.
  - 4. For piping less than 30" below surface of roadways, provide 4" thick concrete base slab support. After installation and testing of piping, provide a 4" thick concrete encasement (sides and top) prior to backfilling and placement of roadway subbase.
- 5. Other areas, use excavated or borrowed materials.

- J. Backfill excavations as promptly as work permits, but not until completion of the following:
  - 1. Inspection, testing, approval, and locations of underground utilities have been recorded.
  - 2. Removal of concrete formwork.
  - 3. Removal of shoring and bracing, and backfilling of voids.
  - 4. Removal of trash and debris.
- K. Placement and Compaction: Place backfill and fill materials in layers of not more than 8" in loose depth for material compacted by heavy equipment, and not more than 4" in loose depth for material compacted by hand-operated tampers.
- L. Before compaction, moisten or aerate each layer as necessary to provide optimum moisture content. Compact each layer to required percentage of maximum dry density or relative dry density for each area classification specified below. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
- M. Place backfill and fill materials evenly adjacent to structures, piping, and equipment to required elevations. Prevent displacement of piping and equipment by carrying material uniformly around them to approximately same elevation in each lift.
- N. Compaction: Control soil compaction during construction, providing minimum percentage of density specified for each area classification indicated below.
  - 1. Percentage of Maximum Density Requirements: Contractor shall reference and comply with all requirements of Specification Section 02200 Site Clearing and Earthwork.
- O. Subsidence: Where subsidence (sinking) occurs at excavations during the period 12 months after Substantial Completion, remove surface treatment (i.e., pavement, lawn, or other finish), add backfill material, compact to specified conditions, and replace surface treatment. Restore appearance, quality, and condition of surface or finish to match adjacent areas.

## 3.3 APPLICATION OF JOINT SEALERS

- A. General: Comply with joint sealer manufacturers' printed application instructions applicable to products and applications indicated, except where more stringent requirements apply.
  - 1. Comply with recommendations of ASTM C 962 for use of elastomeric joints sealants.
  - 2. Comply with recommendations of ASTM C 790 for use of acrylic-emulsion joint sealants.
- B. Apply joint sealer primer to cleaned substrates as recommended by joint sealer manufacturer. Clean substrate as recommended by sealant manufacturer. Protect adjacent areas from spillage and migration of primers, using masking tape. Remove tape immediately after tooling without disturbing joint seal.
- C. Tooling: Immediately after sealant application and prior to the time curing begins, tool sealants to form smooth, uniform beads; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint. Remove excess sealants from surfaces adjacent to joint. Do not use tooling agents that discolor sealants or adjacent surfaces or are not approved by sealant manufacturer.
- D. Installation of Fire-Stopping Sealant: Install sealant, including forming, packing, and other accessory materials, to fill openings around mechanical services penetrating floors and walls, to provide fire-stops with fire-resistance ratings indicated for floor or wall assembly in which penetration occurs. Comply with installation requirements established by testing and inspecting agency.

#### END OF SECTION 230500

# SECTION 230553 - HVAC IDENTIFICATION

# PART 1 - GENERAL

## 1.1 RELATED DOCUMENTS

A. Division 23 - Basic Mechanical Requirements

## 1.2 QUALITY ASSURANCE

- A. Codes and Standards:
  - 1. ANSI Standards: Comply with ANSI A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

## 1.3 SUBMITTALS

A. Product Data: Submit manufacturer's technical product data and installation instructions for each identification material and device required.

## PART 2 - PRODUCTS

#### 2.1 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide mechanical identification materials of one of the following:
  - 1. Seton
  - 2. Brady
  - 3. Kolia
  - 4. Brimar

# 2.2 MECHANICAL IDENTIFICATION MATERIALS

A. General: Provide manufacturer's standard products of categories and types required for each application. Where more than single type is specified for application, selection is the contractor's option, but provide single selection for each product category.

## 2.3 PLASTIC PIPE MARKERS

- A. Snap-On Type: Provide manufacturer's standard pre-printed, semi-rigid snap-on, color-coded pipe markers, complying with ANSI A13.1.
- B. Insulation: Furnish 1" thick molded fiberglass insulation with jacket for each plastic pipe marker to be installed on uninsulated pipes subjected to fluid temperatures of 125° F. (52° C.) or greater. Cut length to extend 2" beyond each end of plastic pipe marker.

- C. Small Pipes: For external diameters less than 6" (including insulation if any), provide full-band pipe markers, extending 360° around pipe at each location, fastened by one of the following methods:
  - 1. Snap-on application of pre-tensioned semi-rigid plastic pipe marker.
- D. Large Pipes: For external diameters of 6" and larger (including insulation), provide either full-band or striptype pipe markers, but not narrower than 3 times letter height (and of required length), fastened by one of the following methods:
  - 1. Laminated or bonded application of pipe marker to pipe (or insulation).
  - 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 1-1/2" wide, full circle at both ends of pipe marker, tape lapped 3".
  - 3. Strapped-to-pipe (or insulation) application of semi-rigid type, with manufacturer's standard stainless steel bands.

# 2.4 PLASTIC TAPE

- A. General: Provide manufacturer's standard color-coded pressure-sensitive (self-adhesive) vinyl tape, not less than 3 mils thick.
- B. Width: Provide 1-1/2" wide tape markers on pipes with outside diameters (including insulation, if any) of less than 6", 2-1/2" wide tape for larger pipes.
- C. Color: Comply with ANSI A13.1, except where another color selection is indicated.

# 2.5 UNDERGROUND-TYPE PLASTIC LINE MARKERS

- A. General: Manufacturer's standard permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 6" wide x 4 mils thick. Provide tape with printing which most accurately indicates type of service of buried pipe.
  - 1. Provide multi-ply tape consisting of solid aluminum foil core between 2 layers of plastic tape.

## 2.6 ENGRAVED PLASTIC-LAMINATE SIGNS (ROOFTOP EQUIPMENT)

- A. General: Provide engraving stock melamine plastic laminate, complying with FS L-P-387, in the sizes and thicknesses indicated, engraved with engraver's standard letter style of the sizes and wording indicated, black with white core (letter color) except as otherwise indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.
- B. Thickness: 1/8", except as otherwise indicated.
- C. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.
- D. Provide lettering to match unit designation per plans.

## 2.7 LETTERING AND GRAPHICS

A. General: Coordinate names, abbreviations and other designations used in mechanical identification work, with corresponding designations shown, specified or scheduled. Provide numbers, lettering and wording as HVAC IDENTIFICATION
230553 - 2

indicated or, if not otherwise indicated, as recommended by manufacturers and for proper identification and operation/maintenance of mechanical systems and equipment.

1. Multiple Systems: Where multiple systems of same generic name are shown and specified, provide identification which indicates individual system number as well as service.

## PART 3 - EXECUTION

#### 3.1 GENERAL INSTALLATION REQUIREMENTS

A. Coordination: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish, including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

#### 3.2 PIPING SYSTEM IDENTIFICATION

- A. General: Install pipe markers of one of the following types on each system indicated to receive identification, and include arrows to show normal direction of flow:
  - 1. Plastic pipe markers, with application system as indicated under "Products" in this section.
- B. Locate pipe markers and color bands as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces (shafts, tunnels, plenums) and exterior non-concealed locations.
  - 1. Near each valve and control device.
  - 2. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.
  - 3. Near locations where pipes pass through walls or floors/ceilings, or enter non-accessible enclosures.
  - 4. At access doors, manholes and similar access points which permit view of concealed piping.
  - 5. Near major equipment items and other points of origination and termination.
  - 6. Spaced intermediately at maximum spacing of 30' along each piping run, except reduce spacing to 20' in congested areas of piping and equipment.

#### 3.3 UNDERGROUND PIPING IDENTIFICATION

A. General: During back-filling/top-soiling of each exterior underground piping systems, install continuous underground-type plastic line marker, located directly over buried line at 6" to 8" below finished grade. Where multiple small lines are buried in common trench and do not exceed overall width of 16", install single line marker. For tile fields and similar installations, mark only edge pipe lines of field.

#### 3.4 MECHANICAL EQUIPMENT IDENTIFICATION

- A. General: Install engraved plastic laminate sign or plastic equipment marker on or near each major item of mechanical equipment and each operational device, as specified herein if not otherwise specified for each item or device. Provide signs for the following general categories of equipment and operational devices:
  - 1. Fans.
  - 2. Packaged HVAC central-station and zone-type units.
  - 3. Hot water heaters.

- B. Optional Sign Types: Where lettering larger than 1" height is needed for proper identification, because of distance from normal location of required identification, stenciled signs may be provided in lieu of engraved plastic, at contractor's option.
- C. Lettering Size: Minimum 1/4" high lettering for name of unit where viewing distance is less than 2'-0", 1/2" high for distances up to 6'-0", and proportionately larger lettering for greater distances. Provide secondary lettering 2/3 to 3/4 of size of principal lettering.
- D. Text of Signs: In addition to name of identified unit, provide lettering to distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

END OF SECTION 230553

## SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

#### PART 1 - GENERAL

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Balancing Air Systems:
    - a. Constant-volume air systems.

#### 1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

#### 1.4 SUBMITTALS

- A. Certified TAB reports.
- B. Instrument calibration reports, to include the following:
  - 1. Instrument type and make.
  - 2. Serial number.
  - 3. Application.
  - 4. Dates of use.
  - 5. Dates of calibration.

#### 1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by **NEBB**
- B. Certify TAB field data reports and perform the following:
  - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
  - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

#### Rock Port R-II – High School Gymnasium Addition

#### 1.6 PROJECT CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

#### 1.7 COORDINATION

A. Perform TAB after leakage and pressure tests on air distribution systems have been satisfactorily completed.

#### PART 2 - PRODUCTS (Not Applicable)

#### PART 3 - EXECUTION

#### 3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "**Metal Ducts**" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan curves.
  - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
  - Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine operating safety interlocks and controls on HVAC equipment.
- L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

## 3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
  - 1. Permanent electrical-power wiring is complete.
  - 2. Automatic temperature-control systems are operational.
  - 3. Equipment and duct access doors are securely closed.
  - 4. Balance, smoke, and fire dampers are open.
  - 5. Isolating and balancing valves are open and control valves are operational.
  - 6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
  - 7. Windows and doors can be closed so indicated conditions for system operations can be met.

## 3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in **NEBB's "Procedural** and in this Section.
  - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
  - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
  - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
  - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

## 3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supplyfan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.

- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

#### 3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
  - 1. Measure total airflow.
    - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
  - 2. Measure fan static pressures as follows to determine actual static pressure:
    - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
    - b. Measure static pressure directly at the fan outlet or through the flexible connection.
    - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
    - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
  - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
    - a. Report the cleanliness status of filters and the time static pressures are measured.
  - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
  - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
  - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
  - 1. Measure airflow of submain and branch ducts.
    - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
  - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
  - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
  - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
  - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
  - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

#### 3.6 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
  - 1. Manufacturer's name, model number, and serial number.
  - 2. Motor horsepower rating.
  - 3. Motor rpm.
  - 4. Efficiency rating.
  - 5. Nameplate and measured voltage, each phase.
  - 6. Nameplate and measured amperage, each phase.
  - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

#### 3.7 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each electric heating coil:
  - 1. Nameplate data.
  - 2. Airflow.
  - 3. Entering- and leaving-air temperature at full load.
  - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
  - 5. Calculated kilowatt at full load.
  - 6. Fuse or circuit-breaker rating for overload protection.
- B. Measure, adjust, and record the following data for each refrigerant coil:
  - 1. Dry-bulb temperature of entering and leaving air.
  - 2. Wet-bulb temperature of entering and leaving air.
  - 3. Airflow.
  - 4. Air pressure drop.
  - 5. Refrigerant suction pressure and temperature.

#### 3.8 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
  - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent
  - 2. Air Outlets and Inlets: Plus or minus 10 percent

#### 3.9 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

#### 3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
  - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
  - 2. Include a list of instruments used for procedures, along with proof of calibration.

- B. Final Report Contents: In addition to certified field-report data, include the following:
  - 1. Pump curves.
  - 2. Fan curves.
  - 3. Manufacturers' test data.
  - 4. Field test reports prepared by system and equipment installers.
  - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
  - 1. Title page.
  - 2. Name and address of the TAB contractor.
  - 3. Project name.
  - 4. Project location.
  - 5. Architect's name and address.
  - 6. Engineer's name and address.
  - 7. Contractor's name and address.
  - 8. Report date.
  - 9. Signature of TAB supervisor who certifies the report.
  - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
  - 11. Summary of contents including the following:
    - a. Indicated versus final performance.
    - b. Notable characteristics of systems.
    - c. Description of system operation sequence if it varies from the Contract Documents.
  - 12. Nomenclature sheets for each item of equipment.
  - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
  - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
  - 15. Test conditions for fans and pump performance forms including the following:
    - a. Settings for outdoor-, return-, and exhaust-air dampers.
    - b. Conditions of filters.
    - c. Cooling coil, wet- and dry-bulb conditions.
    - d. Face and bypass damper settings at coils.
    - e. Fan drive settings including settings and percentage of maximum pitch diameter.
    - f. Inlet vane settings for variable-air-volume systems.
    - g. Settings for supply-air, static-pressure controller.
    - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
  - 1. Quantities of outdoor, supply, return, and exhaust airflows.
  - 2. Duct, outlet, and inlet sizes.
  - 3. Terminal units.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
  - 1. Unit Data:
    - a. Unit identification.
    - b. Location.
    - c. Make and type.
    - d. Model number and unit size.
    - e. Manufacturer's serial number.
    - f. Unit arrangement and class.
    - g. Discharge arrangement.
    - h. Sheave make, size in inches (mm), and bore.
    - i. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
    - j. Number, make, and size of belts.
    - k. Number, type, and size of filters.

- 2. Motor Data:
  - a. Motor make, and frame type and size.
  - b. Horsepower and rpm.
  - c. Volts, phase, and hertz.
  - d. Full-load amperage and service factor.
  - e. Sheave make, size in inches (mm), and bore.
  - f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- 3. Test Data (Indicated and Actual Values):
  - a. Total air flow rate in cfm (L/s).
  - b. Total system static pressure in inches wg (Pa).
  - c. Fan rpm.
  - d. Discharge static pressure in inches wg (Pa).
  - e. Filter static-pressure differential in inches wg (Pa).
  - f. Cooling-coil static-pressure differential in inches wg (Pa).
  - g. Heating-coil static-pressure differential in inches wg (Pa).
  - h. Outdoor airflow in cfm (L/s).
  - i. Return airflow in cfm (L/s).
  - j. Outdoor-air damper position.
  - k. Return-air damper position.
  - 1. Vortex damper position.
- F. Apparatus-Coil Test Reports:
  - 1. Coil Data:
    - a. System identification.
    - b. Location.
    - c. Coil type.
    - d. Number of rows.
    - e. Fin spacing in fins per inch (mm) o.c.
    - f. Make and model number.
    - g. Face area in sq. ft. (sq. m).
    - h. Tube size in NPS (DN).
    - i. Tube and fin materials.
    - j. Circuiting arrangement.
  - 2. Test Data (Indicated and Actual Values):
    - a. Air flow rate in cfm (L/s).
    - b. Average face velocity in fpm (m/s).
    - c. Air pressure drop in inches wg (Pa).
    - d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
    - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
    - f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
    - g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
    - h. Refrigerant expansion valve and refrigerant types.
    - i. Refrigerant suction pressure in psig (kPa).
    - j. Refrigerant suction temperature in deg F (deg C).
- G. Fan Test Reports: For supply, return, and exhaust fans, include the following:
  - 1. Fan Data:
    - a. System identification.
    - b. Location.
    - c. Make and type.
    - d. Model number and size.
    - e. Manufacturer's serial number.
    - f. Arrangement and class.
    - g. Sheave make, size in inches (mm), and bore.

#### Rock Port R-II – High School Gymnasium Addition

- h. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
- 2. Motor Data:
  - a. Motor make, and frame type and size.
  - b. Horsepower and rpm.
  - c. Volts, phase, and hertz.
  - d. Full-load amperage and service factor.
  - e. Sheave make, size in inches (mm), and bore.
  - f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
  - g. Number, make, and size of belts.
- 3. Test Data (Indicated and Actual Values):
  - a. Total airflow rate in cfm (L/s).
  - b. Total system static pressure in inches wg (Pa).
  - c. Fan rpm.
  - d. Discharge static pressure in inches wg (Pa).
  - e. Suction static pressure in inches wg (Pa).
- H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
  - 1. Report Data:
    - a. System and air-handling-unit number.
    - b. Location and zone.
    - c. Traverse air temperature in deg F (deg C).
    - d. Duct static pressure in inches wg (Pa).
    - e. Duct size in inches (mm).
    - f. Duct area in sq. ft. (sq. m).
    - g. Indicated air flow rate in cfm (L/s).
    - h. Indicated velocity in fpm (m/s).
    - i. Actual air flow rate in cfm (L/s).
    - j. Actual average velocity in fpm (m/s).
    - k. Barometric pressure in psig (Pa).
- I. Air-Terminal-Device Reports:
  - 1. Unit Data:
    - a. System and air-handling unit identification.
    - b. Location and zone.
    - c. Apparatus used for test.
    - d. Area served.
    - e. Make.
    - f. Number from system diagram.
    - g. Type and model number.
    - h. Size.
    - i. Effective area in sq. ft. (sq. m).
  - 2. Test Data (Indicated and Actual Values):
    - a. Air flow rate in cfm (L/s).
    - b. Air velocity in fpm (m/s).
    - c. Preliminary air flow rate as needed in cfm (L/s).
    - d. Preliminary velocity as needed in fpm (m/s).
    - e. Final air flow rate in cfm (L/s).
    - f. Final velocity in fpm (m/s).
    - g. Space temperature in deg F (deg C).
- J. Instrument Calibration Reports:

- 1. Report Data:
  - a. Instrument type and make.
  - b. Serial number.
  - c. Application.
  - d. Dates of use.
  - e. Dates of calibration.

#### 3.11 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

## SECTION 230713 - DUCT INSULATION

## PART 1 - GENERAL

## 1.1 SUMMARY

- A. Section includes insulating the following duct services:
  - 1. Indoor, concealed supply and outdoor air.
- B. Related Sections:1. Section 233113 "Metal Ducts" for duct liners.

## 1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- 1.3 QUALITY ASSURANCE
  - A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
    - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

## PART 2 - PRODUCTS

## 2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacketFactory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following
  - a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
  - b. Johns Manville; Microlite.
  - c. <u>Knauf Insulation; Friendly Feel Duct Wrap</u>.
  - d. <u>Manson Insulation Inc.; Alley Wrap</u>.
  - e. Owens Corning; SOFTR All-Service Duct Wrap.

## 2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> <u>CP-82</u>.
    - b. <u>Eagle Bridges Marathon Industries; 225</u>.
    - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
    - d. Mon-Eco Industries, Inc.; 22-25.
  - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
  - 4. Emissions from Various Sources Using Small-Scale Environmental Chambers."

# 2.3 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factoryapplied jackets are indicated, comply with the following:
  - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

## 2.4 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following
    - a. ABI, Ideal Tape Division; 491 AWF FSK.
    - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
    - c. <u>Compac Corporation; 110 and 111</u>.
    - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

e.

- 2. Width: 3 inches (75 mm).
- 3. Thickness: 6.5 mils (0.16 mm).
- 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

## 2.5 SECUREMENTS

- A. Insulation Pins and Hangers:
  - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
    - a. <u>Products</u>: Subject to compliance with requirements, provide the following
      - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
      - 2) <u>GEMCO; Perforated Base</u>.
      - 3) <u>Midwest Fasteners, Inc.; Spindle</u>.
    - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
    - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
  - 2. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
    - a. <u>Products</u>: Subject to compliance with requirements, provide the following
      - 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers.
      - 2) <u>GEMCO; Peel & Press</u>.
      - 3) <u>Midwest Fasteners, Inc.; Self Stick</u>.
    - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
    - c. Adhesive-backed base with a peel-off protective cover.
  - 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steelnsheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

## PART 3 - EXECUTION

# 3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

# 3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
  - 1. Install insulation continuously through hangers and around anchor attachments.
  - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
  - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
  - 1. Draw jacket tight and smooth.
  - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
  - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches (50 mm)] [4 inches (100 mm)] o.c.
    - a. For below ambient services, apply vapor-barrier mastic over staples.
  - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
  - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

# 3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
  - 1. Seal penetrations with flashing sealant.
  - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
  - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
  - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
  - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fireresistive joint sealers.

## 3.4 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
  - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
  - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
  - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
    - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
    - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
    - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
    - d. Do not overcompress insulation during installation.
    - e. Impale insulation over pins and attach speed washers.
    - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
  - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to

adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
- b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Zshaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

# 3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

# 3.6 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
  - 1. Indoor, concealed supply and outdoor air.
- B. Items Not Insulated:
  - 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
  - 2. Factory-insulated flexible ducts.
  - 3. Factory-insulated plenums and casings.
  - 4. Flexible connectors.
  - 5. Vibration-control devices.
  - 6. Factory-insulated access panels and doors.

# 3.7 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm)thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.

## END OF SECTION 230713

SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

# REFER TO PLANS FOR SEQUENCE OF OPERATIONS- CONTROL MANUFACTURER SHALL PROVIDE ALL REQUIRED POINTS AND DEVICES TO ACHIEVE SEQUENCE OF OPERATION

## PART 1 - GENERAL

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

## 1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. MS/TP: Master slave/token passing.
- E. PC: Personal computer.
- F. PID: Proportional plus integral plus derivative.
- G. RTD: Resistance temperature detector.

#### 1.4 SYSTEM PERFORMANCE

- A. Comply with the following performance requirements:
  - 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
  - 2. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
  - 3. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
  - 4. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
  - 5. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
  - 6. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.

- 7. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
  - a. Space Temperature: Plus or minus 1 deg F (0.5 deg C).
  - b. Ducted Air Temperature: Plus or minus 1 deg F (0.5 deg C).
  - c. Outside Air Temperature: Plus or minus 2 deg F (1.0 deg C).
  - d. Dew Point Temperature: Plus or minus 3 deg F (1.5 deg C).
  - e. Temperature Differential: Plus or minus 0.25 deg F (0.15 deg C).
  - f. Relative Humidity: Plus or minus 5 percent.
  - g. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
  - h. Airflow (Terminal): Plus or minus 10 percent of full scale.
  - i. Carbon Dioxide: Plus or minus 50 ppm.
  - j. Electrical: Plus or minus 5 percent of reading.

## 1.5 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
  - 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
  - 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
  - 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
  - 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
  - 3. Wiring Diagrams: Power, signal, and control wiring.
  - 4. Details of control panel faces, including controls, instruments, and labeling.
  - 5. Written description of sequence of operation.
  - 6. Schedule of dampers including size, leakage, and flow characteristics.
  - 7. Schedule of valves including flow characteristics.
  - 8. DDC System Hardware:
    - a. Wiring diagrams for control units with termination numbers.
    - b. Schematic diagrams and floor plans for field sensors and control hardware.
    - c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
  - 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
  - 10. Controlled Systems:
    - a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
    - b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
    - c. Written description of sequence of operation including schematic diagram.
    - d. Points list.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
  - 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
  - 2. Interconnection wiring diagrams with identified and numbered system components and devices.
  - 3. Keyboard illustrations and step-by-step procedures indexed for each operator function.
  - 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
  - 5. Calibration records and list of set points.

#### 1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with ASHRAE 135 for DDC system components.

#### 1.7 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. System Software: Update to latest version of software at Project completion.

#### 1.8 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment with Division 26 Section "Lighting Controls" to achieve compatibility with equipment that interfaces with that system.
- C. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.
- D. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.
- E. Coordinate equipment with Division 26 Section "Electrical Power Monitoring and Control" to achieve compatibility of communication interfaces.

# PART 2 - PRODUCTS

#### 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

## 2.2 CONTROL SYSTEM

- A. Manufacturers:
  - 1. Alerton
  - 2. Siemens
  - 3. Automated Logic
  - 4. Johnson Controls (Branch Office Only)
- B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

# 2.3 DDC EQUIPMENT

- A. Operator Workstation: One PC-based microcomputer(s) with minimum configuration as follows: (location to be determined)
  - 1. Application Software:
    - a. I/O capability from operator station.
    - b. System security for each operator via software password and access levels.
    - c. Automatic system diagnostics; monitor system and report failures.
    - d. Database creation and support.
    - e. Automatic and manual database save and restore.
    - f. Dynamic color graphic displays with up to 5 screen displays at once.
    - g. Alarm processing, messages, and reactions.
    - h. Trend logs retrievable in spreadsheets and database programs.
    - i. Alarm and event processing.
    - j. Object and property status and control.
    - k. Automatic restart of field equipment on restoration of power.
    - 1. Data collection, reports, and logs. Include standard reports for the following:
      - 1) Current values of all objects.
      - 2) Current alarm summary.
      - 3) Disabled objects.
      - 4) Alarm lockout objects.
      - 5) Logs.

## m. Custom report development.

- n. Utility and weather reports.
- o. Workstation application editors for controllers and schedules.
- p. Maintenance management.
- q. Notification of alarms to external device.
- r. Web based software for remote access from any PC through internet IP address
- 2. Custom Application Software:
  - a. English language oriented.
  - b. Full-screen character editor/programming environment.
  - c. Allow development of independently executing program modules with debugging/simulation capability.
  - d. Support conditional statements.
  - e. Support floating-point arithmetic with mathematic functions.
  - f. Contains predefined time variables.

- B. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
  - 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
  - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
    - a. Global communications.
    - b. Discrete/digital, analog, and pulse I/O.
    - c. Monitoring, controlling, or addressing data points.
    - d. Software applications, scheduling, and alarm processing.
    - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
  - 3. Standard Application Programs:
    - a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
    - b. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
    - c. Remote communications.
    - d. Maintenance management.
    - e. Units of Measure: Inch-pound and SI (metric).
  - 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
  - 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
  - 6. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- C. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, readonly memory; and backup power source.
  - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
  - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
    - a. Global communications.
    - b. Discrete/digital, analog, and pulse I/O.
    - c. Monitoring, controlling, or addressing data points.
  - 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
  - 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
  - 5. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- D. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
  - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
  - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
  - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.

- 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation
- 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA)
- 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
- 7. Universal I/Os: Provide software selectable binary or analog outputs.
- E. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
  - 1. Output ripple of 5.0 mV maximum peak to peak.
  - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
  - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- F. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
  - 1. Minimum dielectric strength of 1000 V.
  - 2. Maximum response time of 10 nanoseconds.
  - 3. Minimum transverse-mode noise attenuation of 65 dB.
  - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

#### 2.4 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
  - 1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and[72 hour battery backup.
  - 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms.. Perform automatic system diagnostics; monitor system and report failures.
  - 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
  - 4. LonWorks Compliance: Communicate using EIA/CEA 709.1 datalink/physical layer protocol using LonTalk protocol.
  - 5. Enclosure: Dustproof rated for operation at 32 to 120 deg F (0 to 50 deg C).

#### 2.5 ANALOG CONTROLLERS

- A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.
- B. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
  - 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.
- C. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply

full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.

#### 2.6 ELECTRONIC SENSORS

- Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required. A.
- Β. Temperature Sensors and Transmitters:
  - 1. Manufacturers:
    - **BEC Controls Corporation.** a.
    - b. Ebtron, Inc.
    - Heat-Timer Corporation. c.
    - d. I.T.M. Instruments Inc.
    - MAMAC Systems, Inc. e.
    - f. RDF Corporation.
  - 2. Accuracy: Plus or minus 0.5 deg F (0.3 deg C) at calibration point.
  - 3. Wire: Twisted, shielded-pair cable.
  - Insertion Elements in Ducts: Single point, 8 inches (200 mm) long; use where not affected by temperature 4. stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m).
  - 5. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches (64 mm).
  - Room Sensor Cover Construction: Manufacturer's standard locking covers. 6.
    - Set-Point Adjustment: Concealed a.
    - Set-Point Indication: Exposed. b.
    - c. Thermometer:
    - d. Orientation: Vertical
  - 7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
  - 8. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- C. RTDs and Transmitters:
  - 1. Manufacturers:
    - **BEC Controls Corporation.** a.
    - MAMAC Systems, Inc. b.
    - RDF Corporation. c.
  - 2. Accuracy: Plus or minus 0.2 percent at calibration point.
  - Wire: Twisted, shielded-pair cable. 3.
  - Insertion Elements in Ducts: Single point, 8 inches (200 mm) long; use where not affected by temperature 4. stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m).
  - 5. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches (64 mm).
  - 6. Room Sensor Cover Construction: Manufacturer's standard locking covers.
- D. Humidity Sensors: Bulk polymer sensor element.
  - 1. Manufacturers:
    - BEC Controls Corporation. a.
    - General Eastern Instruments. b.
    - MAMAC Systems, Inc. c. d.
      - **ROTRONIC** Instrument Corp.

- e. TCS/Basys Controls.
- f. Vaisala.
- 2. Accuracy: 2 percent full range with linear output.
- 3. Room Sensor Range: 20 to 80 percent relative humidity.
- 4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
  - a. Set-Point Adjustment: Concealed
  - b. Set-Point Indication: Concealed
  - c. Thermometer: Concealed
- E. Pressure Transmitters/Transducers:
  - 1. Manufacturers:
    - a. BEC Controls Corporation.
    - b. General Eastern Instruments.
    - c. MAMAC Systems, Inc.
    - d. ROTRONIC Instrument Corp.
    - e. TCS/Basys Controls.
    - f. Vaisala.
  - 2. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150psig (1034-kPa) operating pressure; linear output 4 to 20 mA.
  - 3. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure and tested to 300-psig (2070-kPa); linear output 4 to 20 mA.
  - 4. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
  - 5. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

## 2.7 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg (0 to 1240 Pa).
- B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressuredifferential range of 8 to 60 psig (55 to 414 kPa), piped across pump.
- C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

## 2.8 GAS DETECTION EQUIPMENT

- A. Manufacturers:
  - 1. B. W. Technologies.
  - 2. CEA Instruments, Inc.
  - 3. Ebtron, Inc.
  - 4. Gems Sensors Inc.
  - 5. Greystone Energy Systems Inc.
  - 6. Honeywell International Inc.; Home & Building Control.
  - 7. INTEC Controls, Inc.
  - 8. I.T.M. Instruments Inc.
  - 9. MSA Canada Inc.
  - 10. QEL/Quatrosense Environmental Limited.
  - 11. Sauter Controls Corporation.
  - 12. Sensidyne, Inc.
  - 13. TSI Incorporated.
  - 14. Vaisala.
  - 15. Vulcain Inc.
- B. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F (minus 5 to plus 55 deg C) and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.
- C. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.

## 2.9 FLOW MEASURING STATIONS

- A. Duct Airflow Station: Combination of air straightener and multiport, self-averaging pitot tube station. Install at outside air intake
  - 1. Manufacturers:
    - a. Air Monitor Corporation.
    - b. Wetmaster Co., Ltd.
  - 2. Casing: Galvanized-steel frame.
  - 3. Flow Straightener: Aluminum honeycomb, 3/4-inch (20-mm) parallel cell, 3 inches (75 mm) deep.
  - 4. Sensing Manifold: Copper manifold with bullet-nosed static pressure sensors positioned on equal area basis.

## 2.10 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or twoposition action.
  - 1. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
  - 2. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
  - 1. Manufacturers:

## INSTRUMENTATION AND CONTROL FOR HVAC

- a. Belimo Aircontrols (USA), Inc.
- 2. Dampers: Size for running torque calculated as follows:
  - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. (86.8 kg-cm/sq. m) of damper.
  - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. (62 kg-cm/sq. m) of damper.
- 3. Coupling: V-bolt and V-shaped, toothed cradle.
- 4. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 5. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 6. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 7. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 8. Temperature Rating: [Minus 22 to plus 122 deg F (Minus 30 to plus 50 deg C)

## 2.11 DAMPERS

- A. Manufacturers:
  - 1. Air Balance Inc.
  - 2. Don Park Inc.; Autodamp Div.
  - 3. TAMCO (T. A. Morrison & Co. Inc.).
  - 4. United Enertech Corp.
  - 5. Vent Products Company, Inc.
- B. Dampers: AMCA-rated, opposed-blade design; 0.108-inch- (2.8-mm-) minimum thick, galvanized-steel or 0.125inch- (3.2-mm-) minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- (1.6-mm-) thick galvanized steel with maximum blade width of 8 inches (200 mm) and length of 48 inches (1220 mm).
  - 1. Secure blades to 1/2-inch- (13-mm-) diameter, zinc-plated axles using zinc-plated hardware, with oilimpregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
  - 2. Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).
  - 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
  - 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. (50 L/s per sq. m) of damper area, at differential pressure of 4-inch wg (1000 Pa) when damper is held by torque of 50 in. x lbf (5.6 N x m); when tested according to AMCA 500D.
- C. Room thermostat accessories include the following:
  - a. Insulating Bases: For thermostats located on exterior walls.
  - b. Thermostat Guards: Locking, solid metal, ventilated.
  - c. Adjusting Key: As required for calibration and cover screws.
  - d. Aspirating Boxes: For flush-mounted aspirating thermostats.

## 2.12 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Division 27 Section "Communications Horizontal Cabling."

#### PART 3 - EXECUTION

#### 3.1 EXAMINATION

- A. Verify that ]power supply is available to control units and operator workstation.
- B. Verify that pneumatic piping and duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

#### 3.2 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches (1530 mm) above the floor.
  - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- D. Install automatic dampers according to Division 23 Section "Air Duct Accessories."
- E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- F. Install labels and nameplates to identify control components according to Division 23 Section "Identification for HVAC Piping and Equipment."
- G. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic Piping."
- H. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.
- I. Install electronic and fiber-optic cables according to Division 27 Section "Communications Horizontal Cabling."

## 3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Install signal and communication cable according to Division 27 Section "Communications Horizontal Cabling."
  - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
  - 2. Install exposed cable in raceway.
  - 3. Install concealed cable in raceway.
  - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
  - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
  - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.

# INSTRUMENTATION AND CONTROL FOR HVAC

- 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

# 3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust fieldassembled components and equipment installation, including connections. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
  - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
  - 2. Test and adjust controls and safeties.
  - 3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
  - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
  - 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
  - 6. Test each system for compliance with sequence of operation.
  - 7. Test software and hardware interlocks.
- C. DDC Verification:
  - 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
  - 2. Check instruments for proper location and accessibility.
  - 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
  - 4. Check installation of air supply for each instrument.
  - 5. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
  - 6. Check temperature instruments and material and length of sensing elements.
  - 7. Check control valves. Verify that they are in correct direction.
  - 8. Check DDC system as follows:
    - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
    - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
    - c. Verify that spare I/O capacity has been provided.
    - d. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

# 3.5 ADJUSTING

- A. Calibrating and Adjusting:
  - 1. Calibrate instruments.
  - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
  - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.

- 4. Control System Inputs and Outputs:
  - a. Check analog inputs at 0, 50, and 100 percent of span.
  - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
  - c. Check digital inputs using jumper wire.
  - d. Check digital outputs using ohmmeter to test for contact making or breaking.
  - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
- 5. Flow:
  - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
  - b. Manually operate flow switches to verify that they make or break contact.
- 6. Pressure:
  - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
  - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
- 7. Temperature:
  - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
  - b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

## 3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

## END OF SECTION 230900

# SECTION 231123 - NATURAL GAS SYSTEMS

#### PART 1 - GENERAL

#### 1.1 SUBMITTALS

- A. Product data for each gas piping specialty and special duty valve. Include rated capacities of selected models, furnished specialties and accessories, and installation instructions.
- B. Maintenance data for gas specialties and special duty valves, for inclusion in operating and maintenance manual.
- C. Welders' qualification certificates, certifying that welders comply meet the quality requirements specified under "Quality Assurance" below.
- D. Fusion welder's qualification certificates (if not using local gas company personnel), certifying that welders comply meet the quality requirements specified under "Quality Assurance" below.

#### 1.3 QUALITY ASSURANCE

- A. Contractor Qualifications: Installation and replacement of gas piping, gas utilization equipment or accessories, and repair and servicing of equipment shall be performed only by a qualified contractor. The term qualified is defined as experienced in such work (experienced shall mean having a minimum of 5 previous projects similar in size and scope to this project), familiar with precautions required, and has complied with the requirements of the authority having jurisdiction. Upon request, submit evidence of such qualifications to the Engineer.
- B. Qualifications for Welding Processes and Operators: Comply with the requirements of ASME Boiler and Pressure Vessel Code, "Welding and Brazing Qualification."
- C. Regulatory Requirements: Comply with the requirements of the following codes:
  - 1. NFPA 54 National Fuel Gas Code, for gas piping materials and components, gas piping installations, and inspection, testing, and purging of gas piping systems.
  - 2. UPC Uniform Plumbing Code (1991).
- D. Qualifications for Fusion Welding Processes and Operators: Comply with the requirements of local gas company.

#### 1.4 SEQUENCING AND SCHEDULING

A. Coordinate the installation of pipe sleeves for foundation wall penetrations.

# PART 2 - PRODUCTS

#### 2.1 ACCEPTABLE MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide gas piping system products from one of the following:
  - 1. Gas Cocks
    - a. Rockwell
    - b. Rison

## 2.2 PIPE AND TUBING MATERIALS

- A. Steel Pipe: ASTM A 53, Schedule 40, seamless, black steel pipe, beveled ends.
- B. Plastic Pipe (below grade): Driscopipe 6500 (PE 2406) Polyethylene pipe resin, socket fusion joints and ASTM D2513.

## 2.3 FITTINGS

- A. Malleable-Iron Threaded Fittings: ANSI B16.3, Class 150, standard pattern, for threaded joints. Threads shall conform to ANSI B1.20.1.
- B. Steel Fittings: ASTM A 234, seamless or welded, for welded joints.
- C. Steel Flanges and Flanged Fittings: ANSI B16.5, including bolts, nuts, and gaskets of the following material group, end connection and facing:
  - 1. Material Group: 1.1.
  - 2. End Connections: Butt Welding.
  - 3. Facings: Raised face.
- D. Polyethylene Socket Fittings: To be of the same material as piping.

## 2.4 JOINING MATERIALS

- A. Joint Compound: Suitable for the gas being handled.
- B. Gasket Material: Thickness, material, and type suitable for gas to be handled, and for design temperatures and pressures.

## 2.5 PIPING SPECIALTIES

- A. Gas Meters: Provide and installed by local utility company.
- B. Unions: ANSI B16.39, Class 150, black malleable iron; female pattern; brass to iron seat; ground joint.
- C. Dielectric Unions: ANSI B16.39, Class 250; malleable iron and cast bronze; with threaded or soldered end connections suitable for pipe to be joined; designed to isolate galvanic and stray current corrosion.

## NATURAL GAS SYSTEMS

- D. Protective Coating: When piping will be in contact with material or atmosphere exerting a corrosive action, pipe and fittings shall be factory-coated with polyethylene tape, having the following properties:
  - 1. Overall thickness: 20 mils.
  - 2. Synthetic adhesive.
  - 3. Water vapor transmission rate:
    - a. Gallons per 100 square inch: 0.10 or less.
  - 4. Water absorption, percent: 0.02 or less.
- E. Prime pipe and fittings with a compatible primer prior to application of tape. Paint exposed exterior per architects direction.
- 2.6 VALVES
  - A. Gas Cocks: MSS SP-78; 175 psi, lubricated plug type, semi-steel body, single gland, wrench operated, flanged ends. (Standard gas cocks will not be allowed).

# PART 3 - EXECUTION

## 3.1 PREPARATION

A. Conform to the requirements in NFPA 54, for the prevention of accidental ignition.

## 3.2 PIPE APPLICATIONS

- A. Install steel pipe with threaded joints and fittings for 2" and smaller, and with welded joints for 2-1/2" and larger.
- B. Install polyethylene pipe with fusion joints and fittings.

## 3.3 PIPING INSTALLATIONS

- A. Concealed Locations: Except as specified below, install concealed gas piping in an air-tight conduit constructed of Schedule 40, seamless black steel with welded joints. Vent conduit to the outside and terminate with a screened vent cap.
  - 1. Above-Ceiling Locations: Gas piping may be installed in accessible above-ceiling spaces (subject to the approval of the authority having jurisdiction), whether or not such spaces are used as a plenum. Valves shall not be located in such spaces. All piping run above ceiling shall be welded, regardless of size.
  - 2. Piping In Partitions: Concealed piping shall not be located in solid partitions.
  - 3. Prohibited Locations: Do not install gas piping in or through a circulating air duct, clothes chute, chimney or gas vent, ventilating duct, dumb waiter or elevator shaft. This does not apply to accessible above-ceiling space specified above. Do not install piping in floors.
- B. Install pipe sleeve and seals at foundation and basement wall penetrations.

- C. Drips and Sediment Traps: Install a drip leg at points where condensate may collect, at the outlet of the gas meter and at gas equipment locations, and in a location readily accessible to permit cleaning and emptying. Do not install drips where condensate is likely to freeze.
  - 1. Construct drips and sediment traps using a tee fitting with the bottom outlet plugged or capped. Use a minimum of 3 pipe diameters in length for the drip leg. Use same size pipe for drip leg as the connected pipe.
- D. Use fittings for all changes in direction and all branch connections.
- E. Install exposed piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.
- F. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.
- G. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.
- H. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1" clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.
- I. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- J. Install gas piping at a uniform grade of 1/4" in 15 feet, upward to risers, and from the risers to the meter, or service regulator when meter is not provided, or the equipment.
- K. Make reductions in pipe sizes using eccentric reducer fittings installed with the level side down.
- L. Connect branch outlet pipes from the top or sides of horizontal lines, not from the bottom.
- M. Install unions in pipes 2" and smaller, adjacent to each valve, at final connections each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices.
- N. Install dielectric unions where piping of dissimilar metals are joined.
- O. Install flanges on valves, apparatus, and equipment having 2-1/2" and larger connections.
- P. Install strainers on the supply side of each control valve, pressure reducing valve, pressure regulating valve, solenoid valve, and elsewhere as indicated.
- Q. Anchor piping to ensure proper direction of expansion and contraction. Install expansion loops and joints as indicated on the Drawings.

## 3.4 PIPE JOINT CONSTRUCTION

- A. Welded Joints: Comply with the requirements in ASME Boiler and Pressure Vessel Code, Section IX.
- B. Threaded Joints: Conform to ANSI B1.20.1, tapered pipe threads for field cut threads. Join pipe, fittings, and valves as follows:
  - 1. Note the internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint. Refer to NFPA 54, for guide for number and length of threads for field threading steel pipe.

- 2. Align threads at point of assembly.
- 3. Apply appropriate tape or thread compound to the external pipe threads.
- 4. Assemble joint to appropriate thread depth. When using a wrench on valves place the wrench on the valve end into which the pipe is being threaded.
- 5. Damaged Threads: Do not use pipe with threads which are corroded or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.
- C. Flanged Joints: Align flanges surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly to appropriate torque specified by the bolt manufacturer.
- D. Fusion Joints: Comply with the requirements of local gas company and piping manufacturer.

#### 3.5 VALVE APPLICATIONS

- A. General: The Drawings indicate valve types, locations, and arrangements.
- B. Shut-off duty: Use gas cocks specified in Part 2 above.

#### 3.6 VALVE INSTALLATIONS

- A. Install valves in accessible locations, protected from physical damage.
- B. Install a gas cock upstream of each gas pressure regulator. Where two gas pressure regulators are installed in series in a single gas line, a manual valve is not required at the second regulator.
- C. Install pressure relief or pressure limiting devices so they can be readily operated to determine if the valve is free; so they can be tested to determine the pressure at which they will operate; and examined for leakage when in the closed position.

## 3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Install gas cock upstream and within 6 feet of gas appliance. Install a union or flanged connection downstream from the gas cock to permit removal of controls.
- B. Sediment Traps: Install a tee fitting with the bottom outlet plugged or capped as close to the inlet of the gas appliance as practical. Drip leg shall be a minimum of 3 pipe diameters in length.

# 3.8 ELECTRICAL BONDING AND GROUNDING

- A. Install above ground portions of gas piping systems, upstream from equipment shutoff valves electrically continuous and bonded to a grounding electrode in accordance with NFPA 70 "National Electrical Code."
- B. Do not use gas piping as a grounding electrode.
- C. Conform to NFPA 70 "National Electrical Code," for electrical connections between wiring and electrically operated control devices.

# END OF SECTION 231123

#### NATURAL GAS SYSTEMS

## SECTION 233113 - METAL DUCTS

#### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Rectangular ducts and fittings.
  - 2. Round ducts and fittings.
  - 3. Sheet metal materials.
  - 4. Sealants and gaskets.
  - 5. Hangers and supports.

#### B. Related Sections:

- 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

## 1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

#### 1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
  - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
  - 2. Factory- and shop-fabricated ducts and fittings.
  - 3. Duct layout indicating sizes, configuration, and static-pressure classes.
  - 4. Elevation of top of ducts.
  - 5. Dimensions of main duct runs from building grid lines.
  - 6. Fittings.
  - 7. Reinforcement and spacing.
  - 8. Seam and joint construction.
  - 9. Penetrations through fire-rated and other partitions.
  - 10. Equipment installation based on equipment being used on Project.
  - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
  - 12. Hangers and supports, including methods for duct and building attachmentand vibration isolation.

## 1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
  - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
  - 2. Suspended ceiling components.
  - 3. Structural members to which duct will be attached.
  - 4. Size and location of initial access modules for acoustical tile.
  - 5. Penetrations of smoke barriers and fire-rated construction.
  - 6. Items penetrating finished ceiling including the following:
    - a. Lighting fixtures.
    - b. Air outlets and inlets.
    - c. Speakers.
- B. Welding certificates.

# 1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
  - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
  - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
  - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

## PART 2 - PRODUCTS

# 2.1 RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible,"

Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

## 2.2 ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for staticpressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
  - 1. Fabricate round ducts larger Than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

## 2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
  - 1. Galvanized Coating Designation: [G60 (Z180)] [G90 (Z275)].
  - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
  - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

# 2.4 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. <u>CertainTeed Corporation; Insulation Group</u>.
    - b. Johns Manville.
    - c. <u>Knauf Insulation</u>.
    - d. <u>Owens Corning</u>.
    - e. Maximum Thermal Conductivity:
      - 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
  - 2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
  - 3. Solvent -Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
    - a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
    - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Insulation Pins and Washers:
  - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
  - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
  - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
  - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
  - 3. Butt transverse joints without gaps, and coat joint with adhesive.

- 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
- 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
- 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).
- 7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.
- 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
  - a. Fan discharges.
  - b. Intervals of lined duct preceding unlined duct.
  - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.
- 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
  - a. Sheet Metal Inner Duct Perforations: 3/32-inch (2.4-mm) diameter, with an overall open area of 23 percent.
- 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

# 2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
  - 1. Application Method: Brush on.
  - 2. Solids Content: Minimum 65 percent.
  - 3. Shore A Hardness: Minimum 20.
  - 4. Water resistant.
  - 5. Mold and mildew resistant.
  - 6. VOC: Maximum 75 g/L (less water).
  - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
  - 8. Service: Indoor or outdoor.
  - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

#### 2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- D. Trapeze and Riser Supports:
  - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
  - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
  - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

## PART 3 - EXECUTION

#### 3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

# 3.2 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
  - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
  - 2. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C.
  - 3. Conditioned Space, Exhaust Ducts: Seal Class B.
  - 4. Conditioned Space, Return-Air Ducts: Seal Class C.

# 3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- E. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

## 3.4 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

# 3.5 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
  - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and

liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
- 3. Remove and reinstall ceiling to gain access during the cleaning process.

# 3.6 START UP

- A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."
- 3.7 DUCT SCHEDULE
  - A. Fabricate ducts with galvanized sheet steel.
  - B. Supply and return Ducts:
    - 1. Ducts Connected to Constant-Volume Air-Handling Units
      - a. Pressure Class: Positive 2-inch wg (500 Pa)
      - b. Minimum SMACNA Seal Class: A
      - c. EXPOSED DUCTS IN GYM SHALL BE DOUBLE WALL CONSTRUCTION
  - C. Exhaust Ducts:
    - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
      - a. Pressure Class: Negative 1-inch wg (250 Pa)
      - b. Minimum SMACNA Seal Class: [C if negative pressure, and A if positive pressure.
  - D. Elbow Configuration:
    - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
      - a. Velocity 1000 fpm (5 m/s) or Lower:
        - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
        - 2) Mitered Type RE 4 without vanes.
      - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
        - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
        - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
        - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
    - 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
      - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

- 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
- 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
- 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
- 4) Radius-to Diameter Ratio: 1.5.

# E. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
  - a. Rectangular Main to Rectangular Branch: 45-degree entry.
  - b. Rectangular Main to Round Branch: Spin in.
- Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
  - a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
  - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
  - c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

# F. Liner:

- 1. Return Air Ducts: Fibrous glass, Type I 1 inch (25 mm).
- 2. Transfer Ducts: Fibrous glass, Type I 1 inch (25 mm) thick.

## END OF SECTION 233113

## SECTION 233300 - AIR DUCT ACCESSORIES

#### PART 1 - GENERAL

## 1.1 SUMMARY

- A. Section Includes:
  - 1. Manual volume dampers.
  - 2. Flange connectors.
  - 3. Turning vanes.
  - 4. Duct-mounted access doors.
  - 5. Flexible connectors.
  - 6. Flexible ducts.
  - 7. Duct accessory hardware.

## 1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

#### 1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

## PART 2 - PRODUCTS

#### 2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

#### 2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
  - 1. Galvanized Coating Designation: [G60 (Z180)] [G90 (Z275)].
  - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

## 2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. Air Balance Inc.; a division of Mestek, Inc.
    - b. American Warming and Ventilating; a division of Mestek, Inc.
    - c. <u>Flexmaster U.S.A., Inc</u>.
    - d. <u>McGill AirFlow LLC</u>.
    - e. <u>Nailor Industries Inc</u>.
    - f. <u>Pottorff</u>.
    - g. <u>Ruskin Company</u>.
  - 2. Standard leakage rating
  - 3. Suitable for horizontal or vertical applications.
  - 4. Frames:
    - a. Frame: Hat-shaped, 0.094-inch- (2.4-mm-) thick, galvanized sheet steel
    - b. Mitered and welded corners.
    - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
  - 5. Blades:
    - a. Multiple or single blade.
    - b. Parallel- or opposed-blade design.
    - c. Stiffen damper blades for stability.
    - d. Galvanized steel, 0.064 inch (1.62 mm) thick.
  - 6. Blade Axles: Galvanized steel
  - 7. Bearings:
    - a. Oil-impregnated bronze
    - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
  - 8. Tie Bars and Brackets: Galvanized steel.

## 2.4 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements,[provide products by one of the following
  - 1. <u>Ductmate Industries, Inc</u>.
  - 2. <u>Duro Dyne Inc</u>.
  - 3. <u>Elgen Manufacturing</u>.
  - 4. <u>METALAIRE, Inc</u>.
  - 5. <u>SEMCO Incorporated</u>.
  - 6. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

- 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.

## 2.5 DUCT-MOUNTED ACCESS DOORS

- A. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 7-2 (7-2M), "Duct Access Doors and Panels," and 7-3, "Access Doors - Round Duct."
  - 1. Door:
    - a. Double wall, rectangular.
    - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
    - c. Vision panel.
    - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm)butt or piano hinge and cam latches.
    - e. Fabricate doors airtight and suitable for duct pressure class.
  - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
  - 3. Number of Hinges and Locks:
    - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.

## 2.6 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Metal-Edged Connectors: Factory fabricated with a fabric strip [3-1/2 inches (89 mm)] [5-3/4 inches (146 mm)] wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
  - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
  - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
  - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

# 2.7 FLEXIBLE DUCTS

- A. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
  - 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg (250 Pa) negative.
  - 2. Maximum Air Velocity: 4000 fpm (20 m/s).

- 3. Temperature Range: Minus 20 to plus 210 deg F (Minus 29 to plus 99 deg C).
- 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1
- B. Flexible Duct Connectors:
  - 1. Clamps: Nylon strap in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

#### 2.8 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

## PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
  - 1. Install steel volume dampers in steel ducts.
  - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
  - 1. On both sides of duct coils.
  - 2. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.

- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
  - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
  - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
- K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. Connect diffusers or light troffer boots to ducts with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.
- N. Connect flexible ducts to metal ducts with draw bands
- O. Install duct test holes where required for testing and balancing purposes.

# 3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
  - 1. Operate dampers to verify full range of movement.
  - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
  - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
  - 4. Inspect turning vanes for proper and secure installation.

## END OF SECTION 233300

# SECTION 233423 - HVAC POWER VENTILATORS

## PART 1 - GENERAL

## 1.1 SUMMARY

- A. Section Includes:
  - 1. Centrifugal roof ventilators.

## 1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

# 1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

## 1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

## PART 2 - PRODUCTS

## 2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
  - 1. Acme Engineering & Manufacturing Corporation.
  - 2. Carnes Company.
  - 3. Greenheck Fan Corporation.
  - 4. Loren Cook Company.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle square, one-piece, aluminum base with venturi inlet cone.
  - 1. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
  - 1. Resiliently mounted to housing.
  - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.

- 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
- 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
- 5. Fan and motor isolated from exhaust airstream.

# E. Accessories:

- 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- 2. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
- 3. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
- F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base.

# 2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
  - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

## 2.3 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

## PART 3 - EXECUTION

## 3.1 INSTALLATION

- A. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- B. Install units with clearances for service and maintenance.
- C. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."
## 3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

## 3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
  - 1. Verify that shipping, blocking, and bracing are removed.
  - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
  - 3. Verify that cleaning and adjusting are complete.
  - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
  - 5. Adjust belt tension.
  - 6. Adjust damper linkages for proper damper operation.
  - 7. Verify lubrication for bearings and other moving parts.
  - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
  - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
  - 10. Shut unit down and reconnect automatic temperature-control operators.
  - 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

## 3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

## SECTION 233713 – REGISTERS AND GRILLES

## PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Division 15 - Basic Mechanical Requirements and Basic Mechanical Materials and Methods Sections apply to work of this section.

### 1.2 QUALITY ASSURANCE

- A. Codes and Standards:
  - 1. ARI Compliance: Test and rate air outlets and inlets in accordance with ARI/ADC 650 Standard 1062 GRD 84.
  - 2. ISO Compliance: Test and rate air outlets and inlets in accordance with ISO 3741 and ISO 5219.
  - 3. AMCA Compliance: Test and rate louvers in accordance with AMCA 500 "Test Method for Louvers, Dampers and Shutters".
  - 4. AMCA Seal: Provide louvers bearing AMCA Certified Rating Seal.
  - 5. NFPA Compliance: Install air outlets and inlets in accordance with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems".

## 1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's technical product data for air outlets and inlets including the following:
  - 1. Schedule of air outlets and inlets indicating drawing designation, room location, number furnished, model number, size, and accessories furnished.
  - 2. Data sheet for each type of air outlet and inlet, and accessory furnished; indicating construction, finish, and mounting details.
  - 3. Performance data for each type of air outlet and inlet furnished, including aspiration ability, temperature and velocity traverses, throw and drop, pressure loss, and noise criteria ratings. Indicate selections on data.
- B. Shop Drawings: Submit manufacturer's assembly-type shop drawing for each type of air outlet and inlet, indicating materials and methods of assembly of components.
- C. Maintenance Data: Submit maintenance data, including cleaning instructions for finishes, and spare parts lists. Include this data, product data, and shop drawings in maintenance manuals.

## PART 2 - PRODUCTS

### 2.1 CEILING AIR DIFFUSERS

A. General: Except as otherwise indicated, provide manufacturer's standard ceiling air diffusers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.

### REGISTERS AND GRILLES

- B. Performance: Provide ceiling air diffusers that have, as minimum, temperature and velocity traverses, throw and drop, pressure loss, and noise criteria ratings for each size device as listed in manufacturer's current data.
- C. Ceiling Compatibility: Provide diffusers with border styles and mounting hardware that are compatible with adjacent ceiling systems, and that are specifically manufactured to fit into ceiling module with accurate fit and adequate support. Refer to general construction drawings and specifications for types of ceiling systems which will contain each type of ceiling air diffuser.
- D. Types: Provide ceiling diffusers of type, capacity, and with accessories and finishes as shown on drawings.
- E. Acceptable Manufacturers: Subject to compliance with requirements, provide diffusers of one of the following:
  - 1. Basis of design: E.H. Price
  - 2. J&J
  - 3. Titus

## 2.2 REGISTERS AND GRILLES

- A. General: Except as otherwise indicated, provide manufacturer's standard wall registers and grilles where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.
- B. Performance: Provide wall registers and grilles that have, as minimum, temperature and velocity traverses, throw and drop, pressure loss, and noise criteria ratings for each size device as listed in manufacturer's current data.
- C. Wall Compatibility: Provide registers and grilles with border styles that are compatible with adjacent wall systems, and that are specifically manufactured to fit into wall construction with accurate fit and adequate support. Refer to general construction drawings and specifications for types of wall construction which will contain each type of wall register and grille.
- D. Types: Provide wall registers and grilles of type, capacity, and with accessories and finishes as listed on register and grille schedule.
  - 1. Acceptable Manufacturers: Subject to compliance with requirements, provide registers and grilles of one of the following:
    - a. Basis of design: E.H. Price
    - b. Titus
    - c. J & J

## 2.3 LOUVERS

- A. General: Except as otherwise indicated, provide manufacturer's standard louvers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.
- B. Performance: Provide louvers that have maximum free area, and minimum pressure drop for each type as listed in manufacturer's current data, complying with louver schedule.
- C. Substrate Compatibility: Provide louvers with frame and sill styles that are compatible with adjacent substrate, and that are specifically manufactured to fit into construction openings with accurate fit and adequate support, for weatherproof installation. Refer to general construction drawings and specifications for types of substrate which will contain each type of louver.

- D. Materials: Construct of aluminum extrusions, ASTM B 221, Alloy 6063-T52. Weld units or use stainless steel fasteners.
- E. Louver Screens: On inside face of exterior louvers, provide (3/4" expanded aluminum) bird screens mounted in removable extruded aluminum frames.
- F. Acceptable Manufacturers: Subject to compliance with requirements, provide louvers of one of the following:
  - 1. Basis of Design: Penn Ventilator
  - 2. Arrow Louver & Damper
  - 3. Ruskin

## PART 3 - EXECUTION

## 3.1 INSTALLATION

- A. General: Install louvers, air outlets and inlets in accordance with manufacturer's written instructions and in accordance with recognized industry practices to insure that products serve intended functions.
- B. Coordinate with other work, including ductwork and duct accessories, as necessary to interface installation of air outlets and inlets with other work.
- C. Locate ceiling air diffusers, registers, and grilles, as indicated on drawings. Unless otherwise indicated, locate units in center of acoustical ceiling modules.

## SECTION 237413 - PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

## PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:
  - 1. Direct-expansion cooling.
  - 2. Hot-gas reheat.
  - 3. Gas Heat
  - 4. Economizer outdoor- and return-air damper section.
  - 5. Roof curbs.

### 1.3 DEFINITIONS

- A. DDC: Direct-digital controls.
- B. ECM: Electrically commutated motor.
- C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- D. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
- F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
- G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

### 1.4 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 1. Wiring Diagrams: Power, signal, and control wiring.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
  - 1. Structural members to which RTUs will be attached.
  - 2. Roof openings
  - 3. Roof curbs and flashing.
- B. Warranty: Special warranty specified in this Section.

## 1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

## 1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fan Belts: One set for each belt-driven fan.
  - 2. Filters: One set of filters for each unit.

## 1.8 QUALITY ASSURANCE

- A. ARI Compliance:
  - 1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs.
  - 2. Comply with ARI 270 for testing and rating sound performance for RTUs.
- B. ASHRAE Compliance:
  - 1. Comply with ASHRAE 15 for refrigeration system safety.
  - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
  - 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
- E. UL Compliance: Comply with UL 1995.

F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

## 1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
  - 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than 10 years from date of Substantial Completion.
  - 3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
  - 4. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

## PART 2 - PRODUCTS

## 2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide indicated on Drawings or a comparable product by one of the following:
  - 1. AAON, Inc.
  - 2. Carrier Corporation.
  - 3. Engineered Air.
  - 4. Lennox Industries Inc.
  - 5. McQuay International.
  - 6. Trane; American Standard Companies, Inc.

## 2.2 CASING

- A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
  - 1. Exterior Casing Thickness: 0.052 inch (1.3 mm) thick.
- C. Inner Casing Fabrication Requirements:
  - 1. Inside Casing: Galvanized steel, 0.034 inch (0.86 mm)
- D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
  - 1. Materials: ASTM C 1071, Type I.
  - 2. Thickness: 1 inch (25 mm) R-13.

- 3. Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.
- 4. Liner Adhesive: Comply with ASTM C 916, Type I.
- E. Condensate Drain Pans: Formed sections of galvanized -steel sheet, a minimum of 2 inches (50 mm) deep, and complying with ASHRAE 62.1.
  - 1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
  - 2. Drain Connections: Threaded nipple
  - 3. Pan-Top Surface Coating: Corrosion-resistant compound.
- F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

## 2.3 FANS

- A. Belt-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
- B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.
- C. Relief-Air Fan: Forward curved, shaft mounted on permanently lubricated motor.
- D. Fan Motor: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
- E. Variable frequency drives shall be factory wired and mounted in the unit. Fan motors shall be premium efficiency.

## 2.4 COILS

- A. Supply-Air Refrigerant Coil:
  - 1. Aluminum -plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
  - 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
  - 3. Coil Split: Interlaced.
  - 4. Cathodic epoxy coating.
  - 5. Condensate Drain Pan: Galvanized steel with corrosion-resistant coating formed with pitch and drain connections complying with ASHRAE 62.1.
- B. Hot-Gas Reheat Refrigerant Coil:
  - 1. Aluminum -plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
  - 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
  - 3. Cathodic epoxy coating.

# 2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: Two.

- B. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief
- C. Refrigeration Specialties:
  - 1. Refrigerant: R-407C or R-410A.
  - 2. Expansion valve with replaceable thermostatic element.
  - 3. Refrigerant filter/dryer.
  - 4. Manual-reset high-pressure safety switch.
  - 5. Automatic-reset low-pressure safety switch.
  - 6. Minimum off-time relay.
  - 7. Automatic-reset compressor motor thermal overload.
  - 8. Brass service valves installed in compressor suction and liquid lines.
  - 9. Unit shall include a variable capacity scroll compressor on the lead refrigeration circuit which shall be capable of modulation from 10-100% of its capacity

# 2.6 GAS FURNACE

- A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
  - 1. CSA Approval: Designed and certified by and bearing label of CSA.
- B. Burners: Stainless steel.
  - 1. Fuel: Natural gas.
  - 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
- C. Heat-Exchanger and Drain Pan: Stainless steel.
- D. Venting: Gravity vented with vertical extension.
- E. Safety Controls:
  - 1. Gas Control Valve: Two stage
  - 2. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

## 2.7 AIR FILTRATION

- A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
  - 1. Pleated: Minimum 90 percent arrestance, and MERV 7

## 2.8 DAMPERS

A. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.

- 1. Damper Motor: Modulating with adjustable minimum position.
- 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.
- B. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

### 2.9 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC."

## 2.10 ACCESSORIES

- A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- C. Coil guards of painted, galvanized-steel wire.
- D. Hail guards of galvanized steel, painted to match casing.

#### 2.11 ROOF CURBS

- A. Roof curbs with vibration isolators
- B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
  - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
    - a. Materials: ASTM C 1071, Type I or II.
    - b. Thickness: [1 inch (25 mm)] [1-1/2 inches (38 mm)] [2 inches (50 mm)] <Insert thickness>.
  - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
    - a. Liner Adhesive: Comply with ASTM C 916, Type I.
    - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
    - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
    - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- C. Curb Height: Contractor to verify each location with taper insulation minimum is 14"

## PART 3 - EXECUTION

### 3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.
- B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.
- C. Examine roofs for suitable conditions where RTUs will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

### 3.3 CONNECTIONS

- A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- B. Install piping adjacent to RTUs to allow service and maintenance.
  - 1. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping."Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- C. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
  - 1. Install ducts to termination at top of roof curb.
  - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
  - 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
  - 4. Install return-air duct continuously through roof structure.
  - 5. Install normal-weight, 3000-psi (20.7-MPa), compressive strength (28-day) concrete mix inside roof curb, 4 inches (100 mm) thick. Concrete, formwork, and reinforcement are specified with concrete.

# 3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

- B. Perform tests and inspections and prepare test reports.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.
- C. Tests and Inspections:
  - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
  - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
  - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
  - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.

# 3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and do the following:
  - 1. Inspect for visible damage to unit casing.
  - 2. Inspect for visible damage to furnace combustion chamber.
  - 3. Inspect for visible damage to compressor, coils, and fans.
  - 4. Inspect internal insulation.
  - 5. Verify that labels are clearly visible.
  - 6. Verify that clearances have been provided for servicing.
  - 7. Verify that controls are connected and operable.
  - 8. Verify that filters are installed.
  - 9. Clean condenser coil and inspect for construction debris.
  - 10. Clean furnace flue and inspect for construction debris.
  - 11. Connect and purge gas line.
  - 12. Remove packing from vibration isolators.
  - 13. Inspect operation of barometric relief dampers.
  - 14. Verify lubrication on fan and motor bearings.
  - 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
  - 16. Adjust fan belts to proper alignment and tension.
  - 17. Start unit according to manufacturer's written instructions.
    - a. Start refrigeration system.
    - b. Do not operate below recommended low-ambient temperature.
    - c. Complete startup sheets and attach copy with Contractor's startup report.
  - 18. Inspect and record performance of interlocks and protective devices; verify sequences.
  - 19. Operate unit for an initial period as recommended or required by manufacturer.
  - 20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
    - a. Measure gas pressure on manifold.
    - b. Inspect operation of power vents.

- c. Measure combustion-air temperature at inlet to combustion chamber.
- d. Measure flue-gas temperature at furnace discharge.
- e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
- f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
- 21. Calibrate thermostats.
- 22. Adjust and inspect high-temperature limits.
- 23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F (8 deg C) above return-air temperature:
  - a. Coil leaving-air, dry- and wet-bulb temperatures.
  - b. Coil entering-air, dry- and wet-bulb temperatures.
  - c. Outdoor-air, dry-bulb temperature.
  - d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
- 25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
- 26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
  - a. Supply-air volume.
  - b. Return-air volume.
  - c. Relief-air volume.
  - d. Outdoor-air intake volume.
- 27. Simulate maximum cooling demand and inspect the following:
  - a. Compressor refrigerant suction and hot-gas pressures.
  - b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
- 28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
  - a. High-temperature limit on gas-fired heat exchanger.
  - b. Low-temperature safety operation.
  - c. Filter high-pressure differential alarm.
  - d. Economizer to minimum outdoor-air changeover.
  - e. Relief-air fan operation.
  - f. Smoke and firestat alarms.
- 29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

### 3.6 CLEANING AND ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.
- B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

# 3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs. Refer to Section 017900 "Demonstration and Training."

## SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

### PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. This Section includes split-system air-conditioning and heat pump units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

## 1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
- C. Warranty: Special warranty specified in this Section.

#### 1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of split-system units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2012, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IESNA 90.1-2010 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2010, Section 6 "Heating, Ventilating, and Air-Conditioning."

## 1.5 COORDINATION

A. Coordinate size, location, and connection details with roof curbs, equipment supports, and roof penetrations specified in Division 07 Section "Roof Accessories."

### 1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period: 1 year parts and labor and 5 year compressor warranty from date of substantial completion

## 1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Filters: One set of filters for each unit.
  - 2. Fan Belts: One set of belts for each unit.

## PART 2 - PRODUCTS

### 2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 1. Carrier
  - 2. Rheem/Rudd
  - 3. Lennox Industries Inc.
  - 4. Mitsubishi Electronics America, Inc.; HVAC Division.
  - 5. Trane Company (The); Unitary Products Group.
  - 6. York International Corp.
  - 7. Goodman

#### 2.2 CONCEALED EVAPORATOR-FAN COMPONENTS

- A. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
  - 1. Insulation: Faced, glass-fiber duct liner.
  - 2. Drain Pans: Galvanized steel, with connection for drain; insulated and complying with ASHRAE 62.1-2004.
  - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- D. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.

- E. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
  - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- F. Disposable Filters: 1 inch (25 mm) thick, in fiberboard frames with ASHRAE 52.2 MERV rating of 7 or higher
- G. Wiring Terminations: Connect motor to chassis wiring with plug connection.

## 2.3 WALL-MOUNTING, EVAPORATOR-FAN COMPONENTS

- A. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
  - 1. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
  - 2. Drain Pan and Drain Connection: Comply with ASHRAE 62.1-2004.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- D. Fan: Direct drive, centrifugal fan.
- E. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
  - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- F. Filters: Disposable, with ASHRAE 52.2 MERV rating of 7 or higher.

### 2.4 AIR-COOLED, COMPRESSOR-CONDENSER COMPONENTS

- A. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
- B. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
  - 1. Compressor Type: Reciprocating or scroll
  - 2. Single-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
  - 3. Refrigerant: R-407C or R-410A.
- C. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.

- D. Fan: Aluminum-propeller type, directly connected to motor.
- E. Motor: Permanently lubricated, with integral thermal-overload protection.
- F. Mounting Base: Neoprene isolation pad on roof rails
- G. Minimum Energy Efficiency: Comply with ASHRAE/IESNA 90.1-2012, "Energy Standard for Buildings except Low-Rise Residential Buildings."

### 2.5 ACCESSORIES

- A. Thermostat: Programmable, Low voltage with subbase to control compressor and evaporator fan.
- B. Automatic-reset timer to prevent rapid cycling of compressor.
- C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with brazed fittings at both ends. Provide traps as required by manufacturer

## PART 3 - EXECUTION

### 3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install roof-mounting compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.
- D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit. Install traps in refrigerant lines as required by manufacturer

#### 3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Duct Connections: Duct installation requirements are specified in Division 23 Section "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system airconditioning units with flexible duct connectors. Flexible duct connectors are specified in Division 23 Section "Air Duct Accessories."
- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- E. Electrical Connections: Comply with requirements in Division 26 Sections for power wiring, switches, and motor controls.

## 3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections.
  - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
  - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
  - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

### 3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
  - 1. Complete installation and startup checks according to manufacturer's written instructions.

#### 3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units. Refer to Division 01 Section "Demonstration and Training."